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1. INTRODUCTION

The authors of references [1, 2] successfully formulated a single-degree-of-freedom linear
dynamic model with time-varying sti!ness coe$cient expressed as

d2y

dq2
#2f

dy

dq
#(1#a cos rq)y"f , (1)

to analyze the dynamics of the pantograph}catenary system typically used in high-speed
electric trains. Here, q is a non-dimensional time (equal to the nominal natural frequency
times real time), y is the vertical motion of the pantograph component, f is the uplift forcing
term, f is the damping ratio, a is the sti!ness variation coe$cient, and r'0 is
a non-dimensional frequency that is proportional to the train speed. Even though the
proposed dynamic model given above is relatively simple, the formulation does seem to
contain all the critical elements of the problem. However, the presented stability analysis,
based on the Floquet theory, appears to be slightly de"cient, and does not provide the
complete picture of the stable and unstable regions of interest. In this communication, we
present the true nature of the actual stability boundaries including the missing transition
curves separating stability from instability in the parameter plane (a, r) by applying Hill's
method of in"nite determinants [3, 4]. Selected cases of stable and unstable free-responses
based on our parameter plane result are also veri"ed by employing the 4/5th order
Runge}Kutta integration algorithm. Furthermore, equation (1) is transformed into the
well-studied standard Mathieu form to reveal additional insight into the dynamic
characteristics of the pantograph}catenary system.

2. STABILITY ANALYSIS

Since equation (1) is a class of Mathieu equation, the transition curves separating the
bounded and unbounded motions in the parameter plane (a, r) are directly related to the
periodic response characterized by periods of either 4n/r or 2n/r. For a solution of the
dynamic motions with periodicity of 4n/r, we can assume the Fourier series

y(q)"
=
+ [a

n
sin((2n!1)rq/2)#b

n
cos((2n!1)rq/2)]. (2)
n/1
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Substituting equation (2) into equation (1), and equating the like sine and cosine terms
produce two sets of algebraic problems of in"nite dimension given by
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and
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respectively. Note that f"0 here since we are mainly interested in the free dynamic
response. Now, let M

1
be the coe$cient matrix on the left hand side of equation (3), M
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the corresponding matrix in equation (4), A"Ma
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We can then rewrite equations (3) and (4) as M
1
A"fR

1
B and M

2
B"!fR

1
A respectively.

Eliminating B from these two equations yields [M
2
(R

1
)~1M

1
#f2R

1
]A"M0N, where M0N is

the null column vector and R
1

is non-singular. In order to guarantee a non-trivial solution,
the following in"nite determinant must vanish:
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#f2 R

1
D"0. (6)

Equation (6) is in fact a form of Hill's in"nite determinant. Note that the form shown above
is slightly di!erent from the classical in"nite determinant for the undamped Mathieu
equation described in most advanced dynamics text. This is due to the presence of the "rst
derivative expression related to the damping term in equation (1), which couples the
coe$cients of the sine and cosine terms. The solutions to a and r that satisfy equation (6)
represent the transition curves separating stability and instability in the parameter plane.
The points on these transition curves correspond to the periodic motions with periods equal
to 4n/r.

Similarly, we can derive the transition curves corresponding to the periodic motions with
periods equal to 2n/r by assuming the Fourier series solution
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The resulting pair of algebraic problems for the sine and cosine terms is
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and

1!r2!a2/2 a/2 0 0 2

a/2 1!(2r)2 a/2 0 2

0 a/2 1!(3r)2 a/2 2

0 0 a/2 1!(4r)2 2

2 2 2 2 2

i
g
g
j
g
g
k

b
1

b
2

b
3

b
4

2

e
g
g
f
g
g
h

"!2f

i
g
g
j
g
g
k

ra
1

2ra
2

3ra
3

4ra
4

2

e
g
g
f
g
g
h

. (9)

The static term in equation (7) gives rise to b
0
"(!ab

1
/2), which is also used to derive

part of the above algebraic equations. By de"ning N
1

and N
2

to be the coe$cient matrices
on the left-hand side of equations (8) and (9), respectively, and
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the above algebraic problems can also be manipulated like equations (3) and (4) to yield
a second Hill's in"nite determinant expressed as
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The solutions of a and r that satisfy equation (11) are the transition curves corresponding to
the periodic motions with periods equal to 2n/r. Since the determinants in equations (6) and
(11) are in"nite, it is necessary to limit the number of terms in the Fourier series solutions to
ease computational e!orts. This will lead to "nite size determinants. Based on our analysis,
the 9]9 determinants are su$cient to give relatively accurate estimations. The predicted
stability boundaries are illustrated in Figure 1. Note that the unstable regions are
encompassed by boundary curves corresponding to periodic motions with the same
periodicity, while the stable areas are bounded by periodic motions of di!erent periods.
Comparison of this new parameter plane to the one published in references [1, 2] shows
a number of additional unstable regions at lower values of r, which were not predicted
earlier. For the case of f"0, these stability boundaries converge to points on the r-axis
corresponding to the vanishing diagonal elements in equations (3), (4), (8) and (9). This is
because each diagonal term will produce a zero determinant for a"0 at the convergence
points of the transition curves. For periodicity of 4n/r, we obtain r"2, 2/3, 2/5, 2/7, etc.,
and for periods equal to 2n/r, we get r"1, 1/2, 1/3, 1/4, etc. Note that references [1, 2] only



Figure 1. Parameter plane (a, r) of the stable and unstable regions separated by the transition curves corre-
sponding to the periodic motions of the pantograph}catenary system. Note that the transition curves between
r"0 and r"0)2 are not shown: **, f"0; ))))))))), f"0)02; } ) } ) } ) }, f"0.1.
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presented the case of r"2, 1, 2/3 even though there is theoretically an in"nite number of
them between r"2 and 0. These additional points of instability actually explain why the
normalized contact force response in Figure 6 of reference [1] peaks in the vicinity of
r equals to 1/3 and 1/2 in addition to near r equal to 1. The new set of calculations is also
con"rmed by a series of numerical simulation results applying the 4/5th order Runge}Kutta
method. Figures 2 and 3 present the free dynamic responses from the initial condition of
y(0)"1 and (dy/dq) (0)"0 for constant a"0)60 and r"0)93 respectively. In Figure 2, the
non-dimensional frequency r is varied, while in Figure 3, di!erent values of sti!ness
variation coe$cient a are evaluated. In all cases shown, the points that fall within the
instability areas lead to unbounded motions over time as illustrated in Figures 2(a}f ) and
3(b, d), while those that are on the transition curves or outside the instability regions depict
stable motions as shown in Figures 3(a, c). From these time domain simulation results, the
unbounded growth in dynamic motions occurring at the additional instability points as
shown in Figure 2(a}c), which was not mentioned in references [1, 2], supports the validity
of our computations.

In addition, the new calculation results for the damped cases (fO0) are more
conservative than the predictions made by the authors of references [1, 2]. For instance, in
the case of r"2 and f"0)02, the transition curve separating stability from instability
reaches as low as approximately a"0)08, while references [1, 2] show a minimum value of
about a"0)45 that is signi"cantly higher. This resulted in narrower unstable regions in the
earlier study compared to the current one. We believe the error was made during the
application of the Floquet theory in assessing the stability of the system based on the pair of
eigenvalues of the monodromy matrix (also known as the characteristic multipliers [4]),
which were computed from the simulated free dynamic response under two speci"ed initial
conditions as suggested by Nayfeh and Mook [3]. The problem here is that this approach is
meant only for the case of the undamped Mathieu equation. The authors of references [1, 2]
must have relied on the simulation results of equation (1) instead of transforming the



Figure 2. Free dynamic response (unstable) simulation results for a"0)60 and f"0 (a) r"0)325; (b) r"0)39;
(c) r"0)49; (d) r"0)65; (e) r"0)93; (f ) r"1)70.

Figure 3. Free dynamic response simulation results for r"0)93. (a) a"0)4, f"0, periodic; (b) a"0)6, f"0,
unstable; (c) a"0)6, f"0)05, stable; (d) a"0)7, f"0, unstable.
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equation "rst into the standard Mathieu form that does not explicitly contain any "rst
order derivative expression as shown in the next section. This misapplication actually leads
to an erroneous conclusion given in reference [2] when the authors incorrectly identi"ed the
dynamic motion for the case of r"2, a"0)4 and f"0)02 to be bounded. In fact, according



Figure 4. Free dynamic response (unstable) simulation result for the case of r"2, a"0)4 and f"0)02.

532 LETTERS TO THE EDITOR
to our stability analysis, it is unstable as shown in the free dynamic response simulation
results of Figure 4. To further con"rm our suspicion, we retraced the analysis of
characteristic multipliers for the case in question by "rst simulating the free dynamic
response using equation (1) and then later using the standard Mathieu equation. Our results
show that the predicted absolute value of the trace of the monodromy matrix (which
determines the exact form of the characteristic multipliers) is equal to 0)985 in the former
case. This value is slightly less than 1, which makes the solution to appear bounded. On the
other hand, the latter analysis produces a value of 1)049 that predicts an unbounded
solution contrary to the former conclusion. This limited analysis proves our point and also
con"rms that Hill's method of in"nite determinant is more accurate. The misapplication
described above, compounded by the use of discrete grid points to calculate the stability
boundaries as reported in reference [2], may have also resulted in missing transition curves
separating stability from instability at the smaller values of r.

3. STANDARD MATHIEU EQUATION

Suppose we let rq"2¹, the "rst and second derivatives in equation (1) become
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. (12)

Substitution of the above derivatives into equation (1) gives

d2y

d¹2
#2fI
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d¹
#(c#2e cos 2¹) y"cf, (13)



Figure 5. Parameter plane (e, c) of the stable and unstable regions separated by the transition curves corre-
sponding to the periodic motions of the pantograph}catenary system:**, fI"0; ))))))), fI"0)02; } ) } ) } )}, fI"0)1.

LETTERS TO THE EDITOR 533
where c"4/r2, e"2a/r2 and fI"2f/r. Applying Hill's method of in"nite determinant to the
above equation produces another parameter plane (e, c) as shown in Figure 5, which is
essentially equivalent to the one shown in Figure 1. The stability boundary curves in
Figure 5 can be back-transformed into the ones given in Figure 1 by employing

a"2e/c, r"2/Jc and f"fI r/2. Note that since a and r are inversely proportional to c and

Jc, respectively, a horizontal line that goes from c"0PR in the parameter plane shown
in Figure 5 becomes a curvilinear line that starts from in"nity and converges to the origin
(a"0, r"0) of the parameter plane shown in Figure 1. Therefore, as the horizontal line of
c"0PR encounters more regions of instability in Figure 5, say for the undamped case,
each one of these unstable regions is in fact stacked up increasingly closer together as the
corresponding curvilinear line approaches r"0 of the parameter plane in Figure 1. This
pattern of additional stability boundary curves is clearly missing from the parameter planes
given in references [1, 2] as pointed out earlier. Furthermore, a is directly proportional to
the slope e/c of a straight line emanating from the origin of Figure 5. Thus, the steeper the
line becomes (larger a), the greater the region of instability is encountered, which is exactly
as depicted in the parameter plane of Figure 1.

We can further introduce the transformation

y"xe~2fT@r, (14)

which converts equation (13) in the standard Mathieu form given by

d2x

d¹2
#(d#2e cos 2¹)x"fI , (15)

where d"4(1!f2)/r2 and fI"(4f/r2) e(2fT@r). Recall that equation (15) is applied earlier to
demonstrate the calculation of the characteristic multipliers. Since it is well studied, one can



Figure 6. Comparison of the forced response time histories predicted by the proposed analytical solution
presented in reference [1] and our direct numerical integration simulation for the case of r"0)7, f"0)02, f"1,
y(0)"0 and (dy/dq) (0)"0: (a) a"0)1, numerical simulation; (b) a"0)1, analytical prediction; (c) a"0)6,
numerical simulation; (d) a"0)6, analytical prediction.
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simply apply the available published solutions including its parameter plane (generally
known as the Strutt diagram [3, 4]) to further approximate the dynamic characteristics of
the pantographcatenary system. However, there is a limitation. Because of the use of the
transformation de"ned by equation (14) to eliminate the "rst order derivative term, the
points of instability predicted by the standard Strutt diagram of equation (15) may some
time be indeed stable. This is especially true for points near the stability boundaries due to
the stabilizing e!ect of the viscous damping. The e!ect is actually depicted in equation (14)
where the second term given by e~2fT@r may be su$cient, depending on the level of the
damping present, to overcome the unbounded response of x (¹). Hence, the solution
obtained directly from the standard Strutt diagram is slightly conservative.

4. FORCED RESPONSE

Next, the limitations of the steady state forced response formulation given by equation (5)
in reference [1] are discussed. Since the straightforward perturbation method is used to
formulate the forced response equation, which is based on a series expansion about the
linear time-invariant generating solution, the resultant expression should theoretically be
valid only for small variation in the sti!ness coe$cient within the stable region. Therefore,
the predictions by this proposed equation are closest to the actual steady state response
when a is relatively small. The deviation between the approximate and actual solutions
should increase for larger values of a. This trend is actually shown in Figure 6 for the case of
r"0)7, f"0)02 and f"1. By changing a from 0)1 to 0)6, we observe a greater di!erence
between the proposed analytical prediction of reference [1] and our direct numerical
integration solutions (with no simplifying assumption). In addition, the proposed
approximate forced response solution neglects the transient response due to the initial
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conditions, which in some cases do not vanish, but instead lead to a limit cycle behavior.
This is especially true at the parameter points on the transition curves separating stability
from instability in which periodic motions are predominant.

5. CONCLUDING REMARKS

The stability analysis of the pantograph}catenary system based on Hill's method of
in"nite determinant clearly reveals additional unstable areas at lower values of r not
mentioned in references [1, 2]. The new parameter plane depicting transition curves
separating stability from instability is validated using the free dynamic response results. We
also pointed out the misapplication of the Floquet theory to the damped Mathieu equation
resulting in less conservative solutions and missing instability regions. Furthermore, the
analytical solution for the steady state forced response derived from the straightforward
perturbation method is shown to be limited to only small values of a. Finally, we think these
reported discrepancies do not actually alter the main conclusions of the earlier study [1, 2],
but it does provide a more complete characterization of the stability behavior and points
out an obvious misapplication of the Floquet theory.
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The authors wish to thank Guan and Lim [1] for their interest in the material presented in
references [2, 3]. The comments made by them are correct and thus the reader of references
[2, 3] is referred to Figure 1 in reference [1] to replace Figure 5 in reference [2] and Figure 4
in reference [3] as a correction. However, this does not a!ect the main results and
conclusions in references [2, 3], since the damping of a pantograph-catenary system is large
enough to maintain the response of the system always within the stable region. This has also
been pointed out by Guan and Lim in their concluding remarks [1].
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